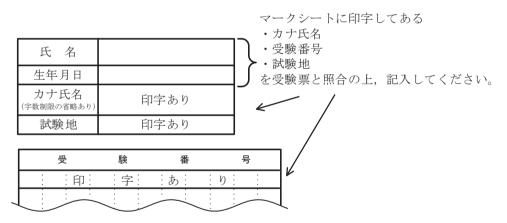
令和7年度

第 2 種

電力

(第2時限目)

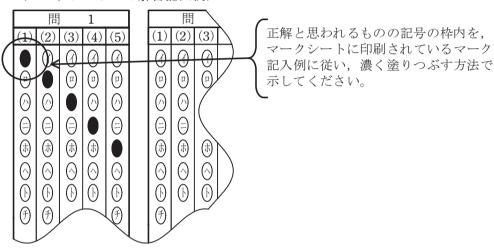

答案用紙記入上の注意事項等

1. マークシート(答案用紙)は機械で読み取りますので、**濃度HBの鉛筆又はH Bの芯を用いたシャープペンシルで濃く塗りつぶして**ください。

色鉛筆やボールペンでは機械で読み取ることができません。

なお, 訂正は「プラスチック消しゴム」で**きれいに消し**, 消しくずを残さないでください。

2. マークシートには、カナ氏名、受験番号、試験地が印字されています。受験票 と照合の上、氏名、生年月日を記入してください。


- 3. マークシートの余白及び裏面には、何も記入しないでください。
- 4. マークシートは、折り曲げたり汚したりしないでください。

5. 解答は、マークシートの問番号に対応した解答欄にマークしてください。

例えば、問1の (1) と表示のある間に対して(4)と解答する場合は、下の例のように問1の(1)の(1)をマークします。

なお、マークは各小問につき一つだけです。二つ以上マークした場合には、採 点されません。

(マークシートへの解答記入例)

- 6. 問題文で単位を付す場合は、次のとおり表記します。
 - ① 数字と組み合わせる場合

(例: $350 \,\text{W}$ $f = 50 \,\text{Hz}$ $670 \,\text{kV} \cdot \text{A}$)

② 数字以外と組み合わせる場合

(例: I[A] 抵抗 $R[\Omega]$ 面積は $S[m^2]$)

(この問題は持ち帰ってください。また、白紙部分はメモ用紙として使用できます。)

次ページ以降は試験問題になっていますので、試験開始の 合図があるまで、開いてはいけません。

試験問題に関する質問にはお答えできません。

第2種 電力

問1 次の文章は、カプラン水車に関する記述である。文中の

に当てはまる

A問題(配点は1問題当たり小問各3点,計15点)

最も適切なものを解答群の	の中から選べ。	
カプラン水車は (1)	[] に分類され、流水が [(2) に通過する水車である。カ
プラン水車は比較的低落	茖差・大容量の水車に適し	している。出力変化に応じて
(3) の開度を自動的	に変えることができるので	,部分負荷での (4) が小さ
٧٠°		
円筒水車(チューブラ水	車やバルブ水車とも呼ばれ	しる)は 20 m 以下の超低落差用
として開発された水車で,	主にカプラン水車が用い	られる。水車入口から吸出管ま
で同一直線上に配置し、『	更に発電機も水車に直結した	た構造となっており, 円筒状の
ケーシングで構成される	る。発電機を小型化するた	こめに,水車と発電機の間に
(5) が設けられるこ	とが多い。	
[問1の解答群]		
(イ) ガイドベーン	(口) 衝動水車	(ハ) 半径方向
() =		/ S - A 15 1;
(二) 騒音	(ホ) 軸方向	(^) 斜流水車
(a) 騒音 (b) 入口弁	(#) 軸方向 (f) 振動	(^) 斜流水車(リ) 斜め方向
(ト) 入口弁	(チ) 振動	(リ) 斜め方向

問2	次の文章は,	地熱発電の特徴や構造に関する記述である。文中の	に当
ては	はまる最も適切	刃なものを解答群の中から選べ。	

地熱発電では高温の地熱流体が必要であり、熱サイクルの形式は噴出蒸気の性質 により決定される。

高温の (1) への生産井の掘削深度は一般的には (2) 程度であり、地表 近くでは大口径で掘られ、深くなるに従い口径は小さくなる。 生産井から噴出する 気水混合流体から (3) によって抽出された蒸気はタービンに供給される。ま た、この過程で得られた熱水を減圧器に導入して蒸気を抽出し、高圧と低圧の蒸気 でタービンを回す方式は (4) と呼ばれる。地熱タービンは、大きな容積流量を 効率よく膨張通過させる必要があるため、同一容量の火力タービンと比較して (5) となり、硫化水素などの不純物に対する耐腐食性が求められる。

[間2の解答群]

- (イ) ダブルフラッシュ方式
- (ハ) トータルフロー発電方式
- (ホ) 地熱貯留層
- ($\)$) 3500 \sim 5000 m
- (川) 冷却塔
- (ル) バイナリーサイクル発電方式 (7) 復水器
- (ワ) マグマ溜まり
- (\exists) 1000 \sim 3000 m

- (口) 気水分離器
 - (ニ) 不透水層
 - (^) 大型
 - (f) 100~500 m
 - (双) 高耐熱

 - (カ) 小型

問3 次の文章は,電力系統の	の同期安定性向上に関する言	記述である。文中の		
に当てはまる最も適切なも	に当てはまる最も適切なものを解答群の中から選べ。			
交流送電系統の送電電力	交流送電系統の送電電力は、送電端電圧と受電端電圧の積及び相差角の正弦に比			
例し, その間の系統リアクタンスに反比例する。送電電力が増加し, 相差角が				
(1) すると、同期安定性の限界に近づくので、平常状態でより安定な状態に保				
つためには、次のような同	一一 つためには、次のような同期安定性向上対策を講じる。			
<設備面の対策>				
・系統リアクタンスの低減(送電線の多ルート化, (2) の設置など)				
・長距離送電線の中間点電圧の維持((3) の設置など)				
・送電電圧の格上げ など	・送電電圧の格上げ など			
<系統運用面の対策>				
・系統電圧の高め運用				
・台風などの事故の発生が懸念される気象条件になった場合の (4) など				
一方で系統リアクタンスの低減は同期安定性向上には寄与するが、短絡・地絡電				
流を増大させてしまうため、下位系統を (5) とし、短絡・地絡電流を抑制する				
などの対策を講じる。				
〔問3の解答群〕				
(4) 放射状系統	(中) 地中化	(ハ) 縮小		
(二) 負荷遮断	(ホ) 直列コンデンサ	(^) SVC		
(ト) 拡大	(f) ShR	(川) 重潮流系統		
(ヌ) 系統切替	(ル) ループ系統	(7) 抵抗機器		
(7) SVR	(カ) 反転	(ヨ) サイリスタ		

問4	次の文章は,	架空送電線路に関する記述である。文中の	に当てはまる
最も	適切なものを	解答群の中から選べ。	
架	空送電線路は	,主に電線・支持物・がいしなどで構成される。	

電線は、相配列を区間ごとに変える (1) と呼ばれる配線がなされており、各相のインダクタンス及び静電容量が等しくなるようにしている。また、電線の種類としては、154kVの電圧階級において主に (2) が用いられている。

支持物は、電線を支持することを目的とする工作物であり、鉄塔・鉄柱・鉄筋コンクリート柱・木柱の4種類がある。架空送電線支持物の大半を占める鉄塔の構成材としては、鋼管と (3) の二種類があり、前者を用いた鉄塔を鋼管鉄塔、後者を用いた鉄塔を (3) 鉄塔という。また、支持物間の距離を径間と呼び、電圧・回線数・電線太さ・支持物構造・気象・地形などを考慮して経済的な径間を選定する。154kVの電圧階級において、標準的な径間長は (4) m程度である。

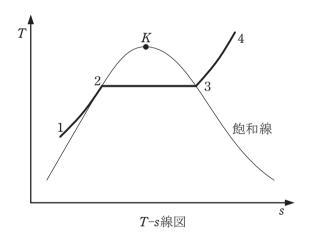
がいしは、電線を支持物から絶縁するためのものであり、絶縁体に磁器を採用したものが主流である。雷サージのような過大な電圧によるフラッシオーバによってがいし連が破損しないよう、がいし連の両端には (5) が取り付けられている。

[間4の解答群]

(イ) 溝形鋼(ロ) ダンパ(ハ) 600(二) 終端接続(ホ) 硬銅より線(ハ) H 形鋼(ト) クロスボンド(チ) 鋼心アルミより線(リ) 亜鉛めっき鋼より線(ヌ) 山形鋼(ル) 300(ヲ) 100(ワ) アーマロッド(カ) アークホーン(ヨ) ねん架

B問題(配点は1問題当たり小問各2点、計10点)

問5 次の文章は、汽力発電や原子力発電の作動流体として使われる蒸気に関する記 述である。文中の に当てはまる最も適切なものを解答群の中から選べ。


蒸気の状態変化を表すものとして、絶対温度を縦軸に、 (1) を横軸に取った T-s 線図がよく用いられる。T-s 線図には、面積が (2) を表すという特長があ る。

圧力を一定にして水を熱すると水温が上がって沸点に達する(軌跡 $1\rightarrow 2$)。

さらに熱しても水温は上昇せず、加えた熱量は水を蒸発させるために消費される 状態 $(2\rightarrow 3)$ になるが、この熱量のことを (3) という。

水が全て蒸発した後、さらに加熱を続けると、一定の圧力下では加えた熱量に応 じて温度が上昇する $(3\rightarrow 4)$ 。この状態の蒸気を|(4)|という。

また、T-s 線図のK点のことを (5) という。

[間5の解答群]

- (イ) エクセルギー (ロ) 過熱蒸気
- (ハ) 内部エネルギー

- (二) 顕熱
- (ホ) 体積
- (^) 三重点

- (ト) 湿り蒸気
- (チ) 分界点
- (リ) エントロピー

- (ヌ) 流量
- (N) 飽和蒸気
- (ヲ) 潜熱

- (ワ) 生成熱
- (カ) 臨界点
- (3) 熱量

問 6 次の文章は,電力用機器の絶縁媒体として広く活用されている SF ₆ ガスの	基			
本的な物性と課題,そして近年の代替ガス技術に関する記述である。文中の				
に当てはまる最も適切なものを解答群の中から選べ。				
SF_6 ガスは絶縁耐力が空気の約 $\boxed{ (1) }$ 倍,アーク遮断能力が空気の約 10 倍	と			
優れていることに加え、液化温度が低く化学的安定性が高い、人体に対しても安	全			
なガスという特徴を持っている。電気事業では、ガス遮断器やガス絶縁開閉装置等				
に SF ₆ ガスを使用することにより、機器を (2) でき、高い信頼性、保守の容	に SF ₆ ガスを使用することにより、機器を (2) でき、高い信頼性、保守の容易			
性,安全性や環境調和等の理由から,我が国の電力設備に広く適用されている。				
一方, SF ₆ ガスは, 不平等電界下では著しく絶縁性能が低下するため導電性異	物			
の混入に弱いことが挙げられるとともに, (3) が高いガスであることが指摘	さ			
れており,1997年12月に京都で開催された第3回気候変動枠組条約締約国会議(通			
称 COP3) において、将来削減しなければならない対象ガスの一つに指定された。	۲			
れをきっかけに SF ₆ 代替ガスの研究が盛んとなった。				
SF_6 代替ガスとして,高気圧空気, $\boxed{ (4) }$, N_2 などの自然由来ガス, SF_6 ガス				
との混合ガス, 2010 年代に入ると, 欧州を中心に新たに化学合成されたフッ素系ガ				
スと (4) などとの混合ガスも発表され、現在もなお、それら代替ガスを適用し				
た機器開発検討が続けられている。				
合わせて、SF ₆ ガス遮断器に替わる高電圧送変電用遮断器として (5) の高	電			
圧化技術が強く求められている。				
[問6の解答群]				
(イ) デジタル化 (ロ) 小型化 (ハ) 5				
(二) 3 (本) 冗長化 (个) 真空遮断器				
(ト) 熱変換効率 (チ) 空気遮断器 (リ) H ₂				
(ヌ) CO ₂ (ル) 地球温暖化係数 (ヲ) 4				
(7) 油遮断器 (カ) CH ₄ (3) エネルギー消費係数				

問7 次の文章は、低圧配電	電系統の単相 3 線式供給方式	式に関する記述である。文中
の に当てはまる旨	最も適切なものを解答群の「	中から選べ。
低圧配電系統に用いられ	れている単相3線式供給方式	式の特長は、下記である。
① 一つの系統から単相の) 100 V, 200 V どちらの機器	景にも使える。
② 単相2線式に比べて,	経済性が高い。単相3線式	の負荷が平衡している条件の
もとで、		
・負荷容量及び電線の力	太さ・長さが同じ場合, 単れ	相2線式に比べて電圧線の電
流は (1) になる。		
・負荷容量,電線の長さ	さ及び電力損失が同じ場合,	単相2線式に比べて所要銅
量は (2) になる。		
③ 200 V 回路の安全性が	高い。	
・中性線が接地されてい	\るので,200∨回路の対地で	電位は (3) V であり,安
全性が高い。		
一方、中性線の断線など	どによって、電源側中性点。	と負荷側の中性線との導通が
不完全になると, 100 V 回	国路の電圧は負荷の (4)	の絶対値に比例して配分さ
れる。その際,二つの 100	OV回路の負荷に不平衡がる	あると, 一方の 100 V 回路に
(5) を生じ,その回路	各の機器類を損傷・焼損す ²	るなどの障害を起こすおそれ
がある。		
[問7の解答群]		
$(4) \frac{1}{2}$	$(\mathfrak{p}) \frac{1}{\mathfrak{p}}$	(n) $\frac{1}{4}$
8	3	4
(=) 過電圧	(\dagger) $\frac{1}{2}$	(^) 高調波電圧
	2	
(ト) 逆相電圧	(f) $\frac{1}{16}$	$(y) \frac{3}{8}$
		Ü
(ヌ) アドミタンス	(ル) 電力量	(7) 100
$(7) \frac{100}{\sqrt{3}}$	(カ) インピーダンス	(3) $100\sqrt{3}$
√3		